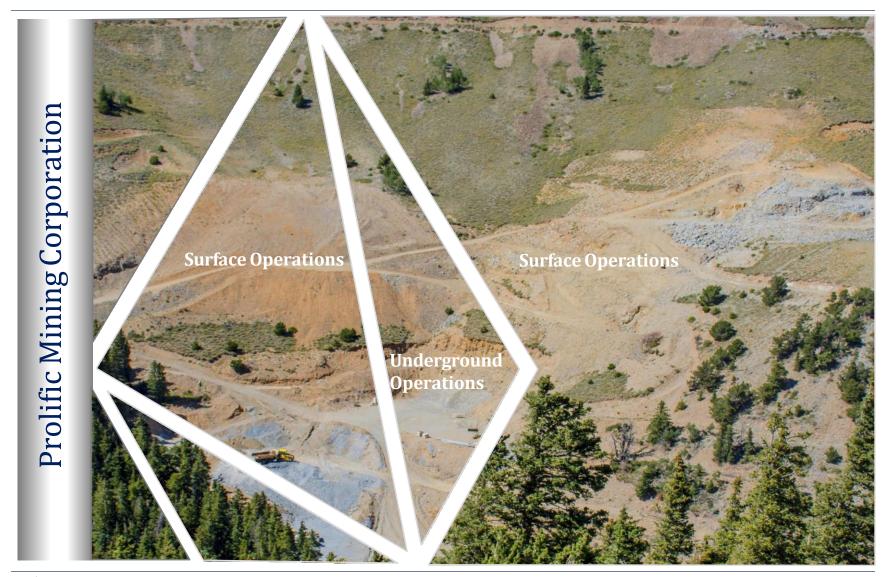

GOLD PORPHYRY & POLYMETALLIC DEPOSIT HENRY MOUNTAINS UTAH, USA

Tier-one Deposit

GEOLOGICAL PRESENTATION


Disclaimer

This presentation may include certain "forward-looking statements". All statements other than statements of historical fact, included herein, including, without limitation, statements regarding future plans and objectives of the company, are forward-looking statements that involve various risks, assumptions, estimates and uncertainties. These statements reflect the current internal projections, expectations or beliefs of the company and are based on information currently available to the company. There can be no assurance that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. All of the forward looking statements contained in this presentation are qualified by these cautionary statements and the risk factors described above. Furthermore, all such statements are made of the date this presentation is given and the company assumes no obligation to update or revise these statements.

An investment in the company is speculative due to the nature of the company's business. The ability of the company to carry out its growth initiatives as described in this confidential PowerPoint presentation is dependant on the company obtaining additional capital. There is no assurance that the company will be able to successfully raise the capital required or to complete each of the growth initiatives described. Investors must rely upon the ability, expertise, judgment, discretion, integrity and good faith of the management of the company.

Henry Mountain Project, Utah USA

PMC History ♦PMC® Satellite remote Completion of 25-100 tph crushing, grinding, sensing survey Surface gravity, and flotation 3D Inversion by trenching pilot mill UBC, Assay results, program XRD Survey of Drill hole targeting Underground Ground-based RC Drilling (14 Holes geophysical Samples @ 500 meters Surface Sampling, High resolution survey Detailed geologic Aeromagnetic mapping survey 200 201 201 201 201 201 201 201 201 201 202 202 202 1 2 RC Drilling *36 Underground Underground Holes @ 11,500 Channel mining high-grade meters) **PMC** founded Mapping and Sampling structure (formerly Bromide sampling historic (two Adits 1.8 km) Mining LLC) underground Diamond Dilling workings Completion of (2 Holes @ 2,800 Diamond Henry Mountain 100-meter surface meters) Dilling (24 Project > 3,500 Ha rock grid survey holes @ 1,700 >800 samples Extensive meters) metallurgial test **Porphyry** work encouraging Discovery cyanide leach results

Henry Mountain Deposit Overview

Potential Mineralization > 3 km diameter (2,000 + acres) and depth to 900 m

Increasing	Vein	Density
------------	------	----------------

Discrete Structures

Shallow 0-350 m

Increasing Depth

Deposit Description	Altered shears, faults, fractures, and breccia pipes, transitioning to mesothermal 0.5 -75 m veins, and discrete phyllic-altered structures
Key Elements	Au, +/- Cu, and Mo (see drill holes 4, 5, 6, 7 and DH076SE)
Secondary Elements	Ag, Re, Te, Co, S, Mn, and Fe

Porphyry Stockwork

Deposit Description	Quartz stockwork bandedquartz veins (A-type),sulfide-bearing (B- type) abundant M-veins, and potassic/sodic/propylitic alteration associated with gold mineralization
Key Elements	Au, +/- Ag, Cu, and Mo (see drill hole DH078SW and DH076SE 0-350 m)
Secondary Elements	Re, Te, Co, S, Mn, and Fe

eep 350-900 n

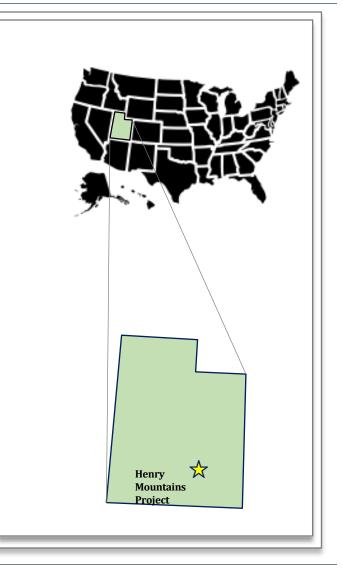
Deposit Description	Mesothermal structures (1-75 m) width, transitioning to coarsely disseminated mineralization at depth, with soft or fuzzy mineralization boundaries
Key Elements	Au, +/- Cu, Mo, and Ag (see DH076SE below 350 m)
Secondary Elements	Re, Te, Co, S, and Fe

Deposit Description	Developed quartz stockwork, increasing banded veins (associated with Au mineralization, with increasing potassic alteration, transitioning to actinolite/albite alteration >900 meters
Key Elements	Au, +/- Ag, Cu, and Mo (see drill hole DH078SW below 350 meters)
Secondary Elements	Re, Te, Co, S, Mn, and Fe

Henry Mountain Project Details

	Gold Porphyry Project
✓	Large gold porphyry (3kmdiameter)
✓	Huge upside potential
✓	8,000 acres of Land Holdings
✓	25-100 tph gravity/floatation facility on site
✓	Permissible mining permit
✓	Surface and deep porphyry mineralization to 900m
✓	Multi-element potential (Ag, Cu, Mo, Re)

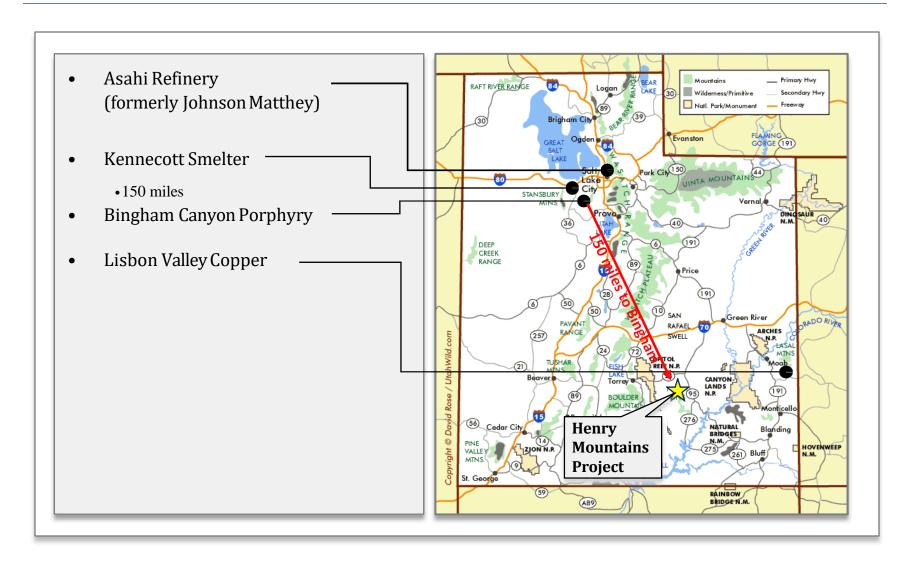
	Utah, USA Prime Location Infrastructure in Place
✓	Supportive government
✓	Thriving miningindustry
✓	Major roads and railroads
√	Low-cost environment
✓	Surface and groundwater rights
✓	Heavy equipment fleet
✓	Skilled labor



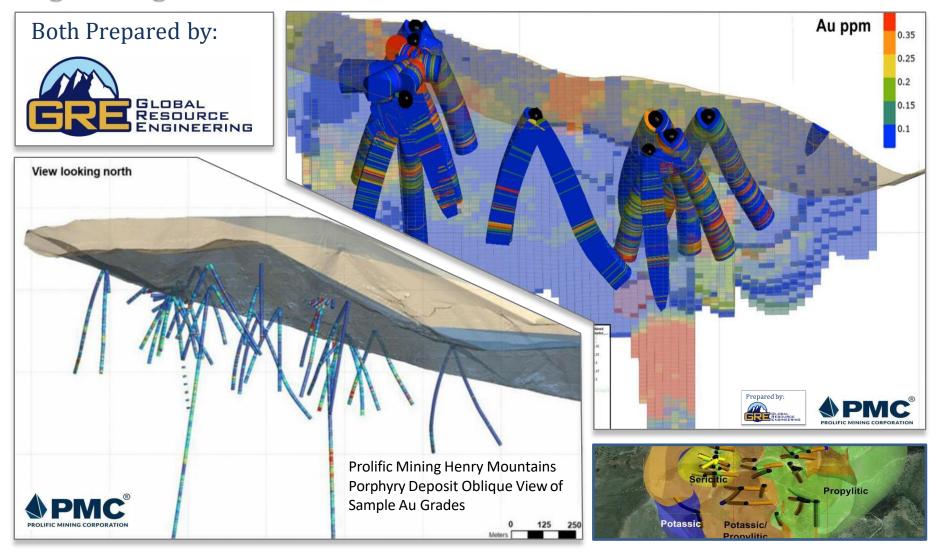
Utah, USA is a Prime Location

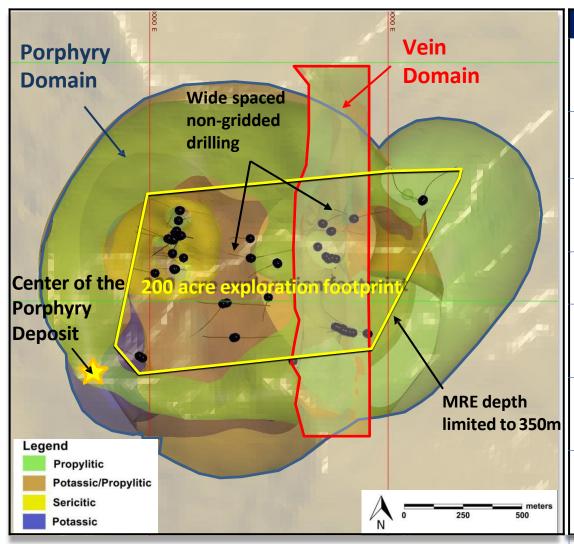
USA Still the Place to Locate and Mine Gold

- Terrain and exposure is optimal for goldexploration
- ✓ Clear and friendly mining policies
- Clear mineral rights Both patented and non-patented claim laws
- ✓ Secure geopolitical outlook
- Trained, abundant labor, and excellent infrastructure
- ✓ Gold is cheaper to produce in the USA than other countries
- ✓ Low level of corruption



Infrastructure in Place


Notable Surrounding Mines, Refineries, and Smelters

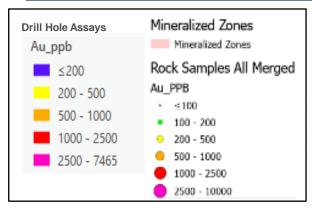

NI 43-101 Mineral Resource Report – June 2020 by Global Resource

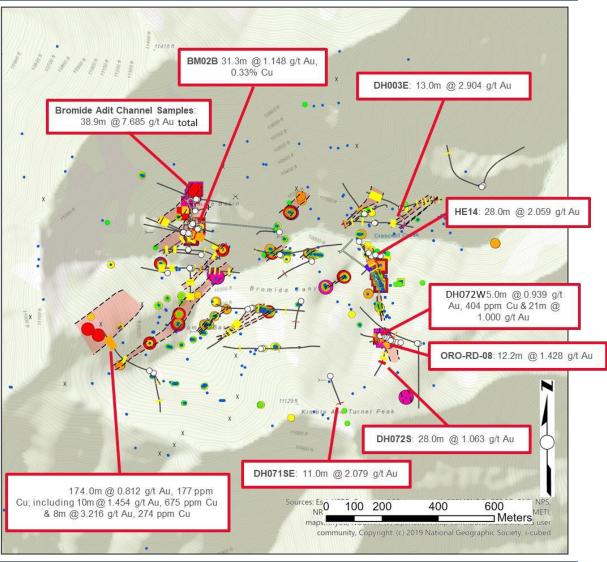
Engineering

Mineral Resource Estimate Considerations

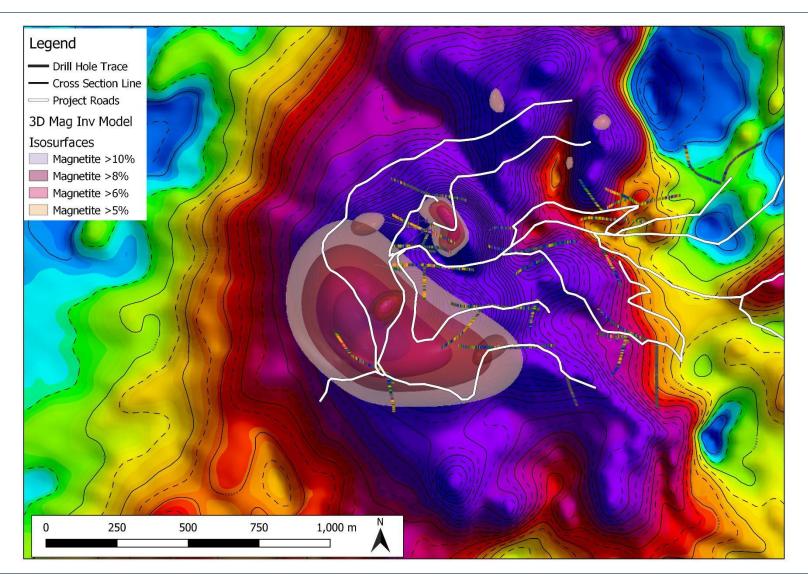
Inputs and Limitations

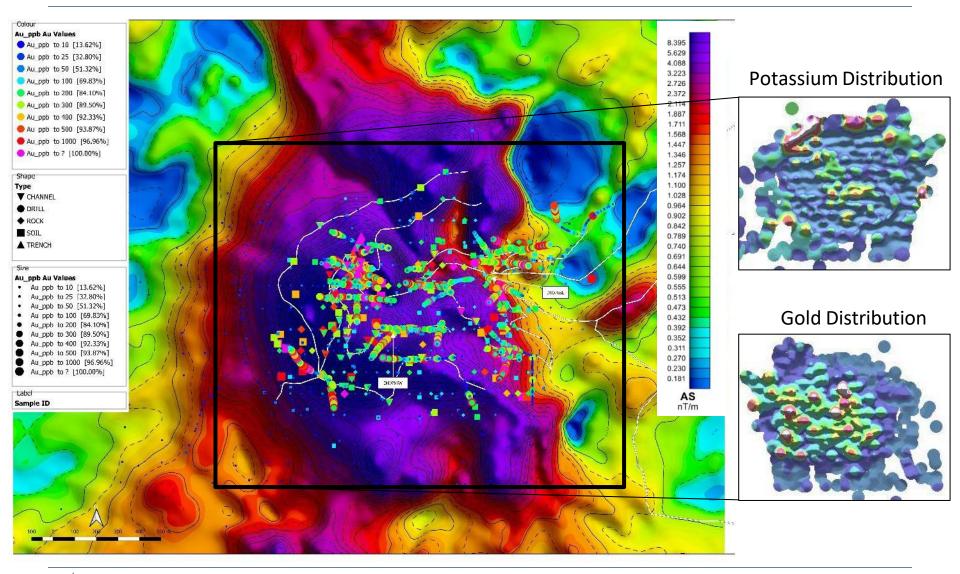
- Separated into two model domains (porphyryand vein) and four alteration domains
- Drill hole data only 76 total drill holes (49 RC drill holes and 27 diamond drill holes)
- Excludes 207 channel, 1250 trench, 220 rock, and 280 soil high-grade samples.
 Also excludes coarse gold.
- ✓ Limited to 200 out of 2,000+ acres of potentially prospective ground
- Limited to a depth of ~350 meters and porphyry mineralization occurs between 300-800 meters
- Center of the porphyry system is located further to the west and not yet drilled and included in the MRE
- Unoptimized drill hole locations for the MRE focused in surface structures, or were wide-spaced, aimed at developing the geologic model not an optimizedMRE


Mineral Resource Estimate by Geologic Domain

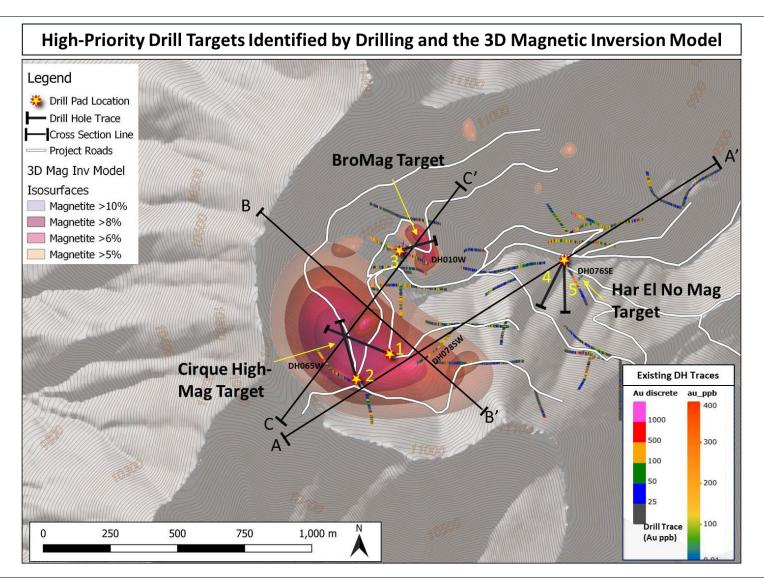

		Tonnes	Average Grade		Metal Content	
Cutoff	Resource Class	Mt	Au	Ag	Au	Ag
		ppm	nnm	thousand t.	thousand t.	
			ppiii	ppm	OZ	OZ
0.25	Indicated	21.5	0.4	0.56	279	389
	Inferred	98.6	0.48	0.58	1,522	1,843
0.3	Indicated	14.7	0.46	0.55	220	258
	Inferred	60.6	0.61	0.57	1,191	1,120

Note: MRE does not include coarse gold, channeling samples, trenching samples, or breccia pipes. MRE does not include other ore elements present like copper or molybdenum

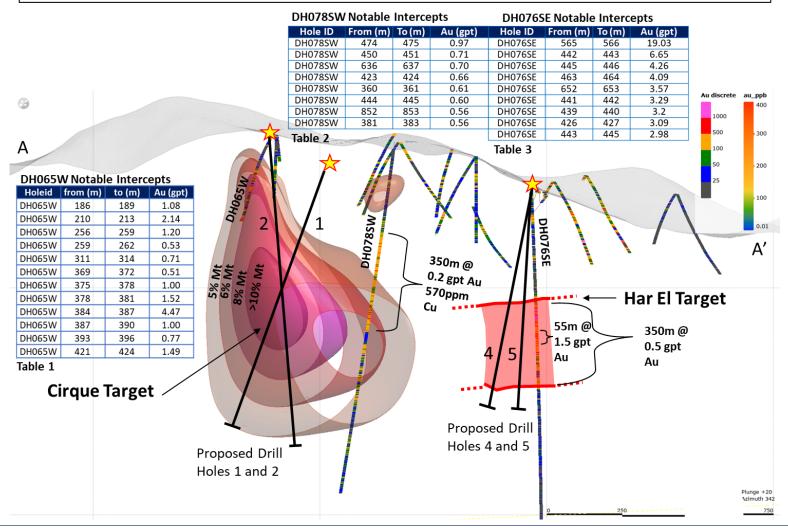

Surface Zones

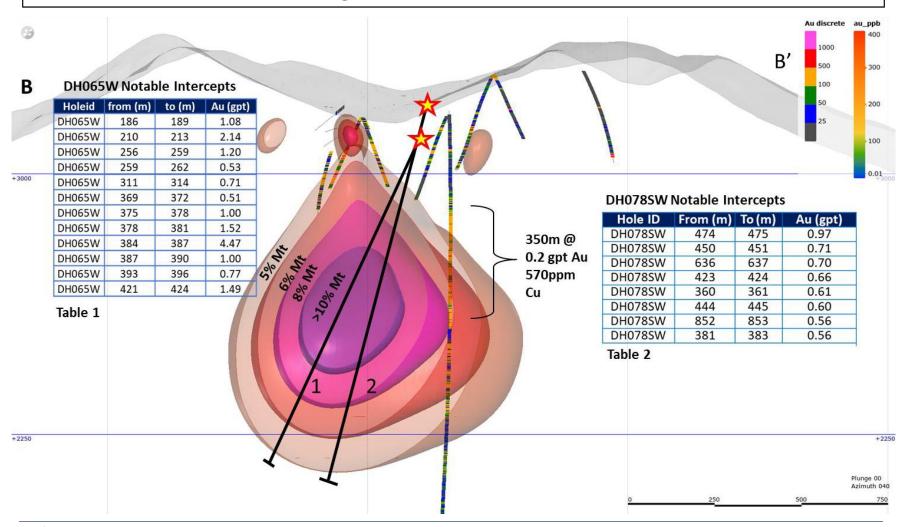


High Resolution Aeromagnetic Survey and 3D Inversion

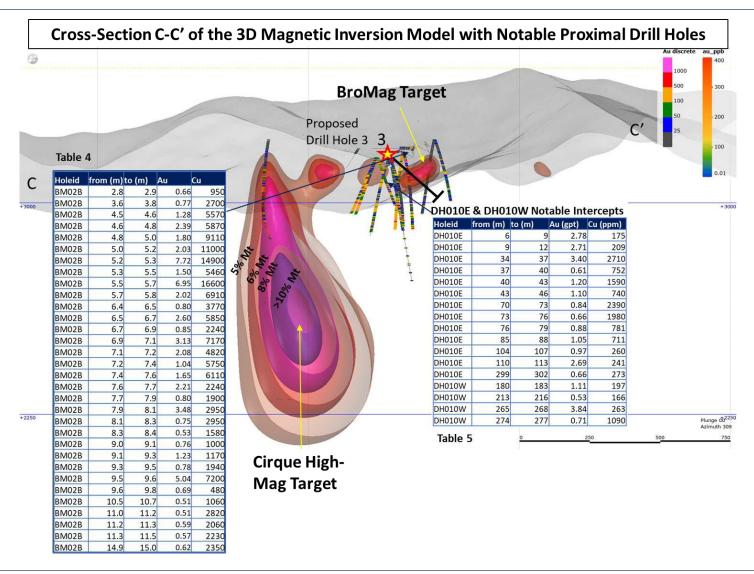


Magnetic-High Consistent with High-Grade Assays and Potassic Alteration

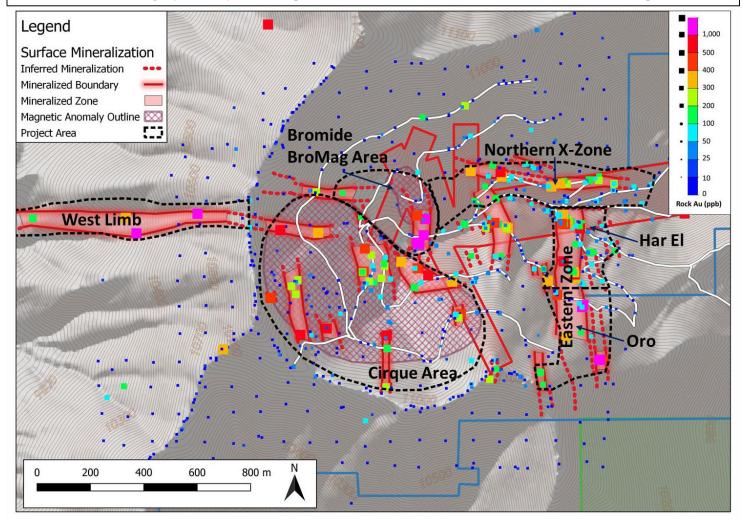




Cross-Section A-A' of the 3D Magnetic Inversion Model with Notable Proximal Drill Holes



Cross-Section B-B' of the 3D Magnetic Inversion Model with Notable Proximal Drill Holes



Surface Mineralized Zones Based on 2021 Rock Sampling

Surface Rock Assays (N=872) Showing Notable Mineralization in Relation to the Magnetic Data

Significant Drill Hole Highlights (Open-ended Mineralization)

	Drill Results
✓	76 drill holes (over 16,300m)
✓	Collars cover 200 acres
✓	Deep diamond drills to 1,200 meters
✓	Mineralization to 900m
✓	Long high-grade intercepts

Notable Au grades from Deep Diamond Drill Holes

Hole ID	From (m)	To (m)	Au (gpt)
DH076SE	565	566	19.03
DH076SE	442	443	6.65
DH076SE	445	446	4.26
DH076SE	463	464	4.09
DH076SE	652	653	3.57
DH076SE	441	442	3.29
DH076SE	439	440	3.2
DH076SE	426	427	3.09
DH076SE	443	445	2.98
DH078SW	474	475	0.97
DH078SW	450	451	0.71
DH078SW	636	637	0.70
DH078SW	423	424	0.66
DH078SW	360	361	0.61
DH078SW	444	445	0.60
DH078SW	852	853	0.56
DH078SW	381	383	0.56

Hole ID	From (m)	To (m)	Interval (m)	Au (gpt)
BM02B	4	34	30	1.10
BR 4	0	54	54	0.72
BR 5	0	47	47	0.59
BR 6	17	41	24	0.96
BR 7	0	30	30	1.22
BR 8	4	42	38	0.90
DH072W	0	128	128	0.56
DH076SE	411	464	53	1.42
HE14	12	42	30	2.05

Hole ID	From (m)	To (m)	Interval (m)	Cu (ppm)
BM02B	3	57	54	2336
BR 10	0	32	32	1682
BR 4	5	53	50	2133
BR 5	0	47	47	1540
BR 6	11	41	30	2441
BR 7	0	30	30	1218
DH010E	0	140	140	630
DH078SW	300	656	356	570

Hole ID	From (m)	To (m)	Interval (m)	Mo (ppm)
DH003E	113	189	76	50
DH003W	76	128	52	50
DH010E	64	125	61	61
DH078SW	300	656	356	80
DH078SW	858	938	80	100

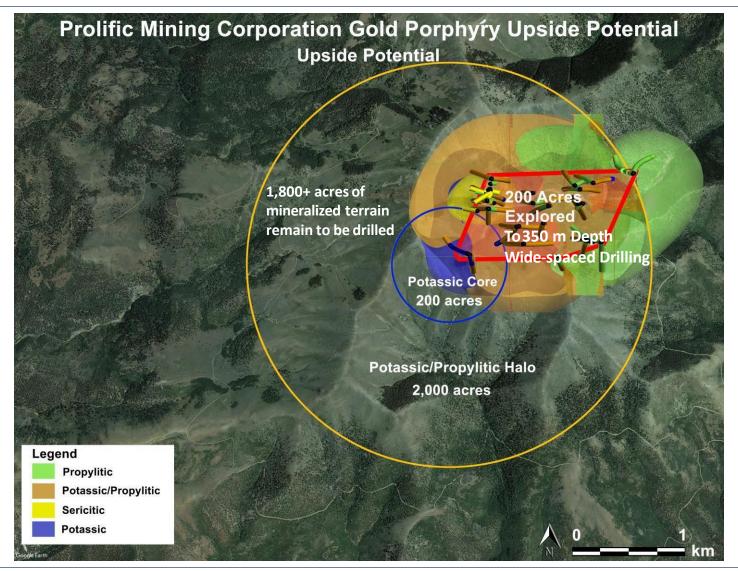
Underground Channel and Surface Trenching Highlights

Underground Channel Highlights

Zone	SAMPLE ID	WIDTH (m)	Au (gpt)
Bromide	BMCH02	1.2	0.85
Bromide	BMCH03	2.4	0.77
Bromide	BMCH04	7.8	1.1
Bromide	ВМСН06	1.0	1.5
Bromide	BMCH07	1.0	1.7
Har El	HECH06	1.0	6.9
Har El	HECH15	4.9	2.6
Zone	SAMPLE ID	WIDTH	Cu (ppm)
Bromide	BMCH03	1.2	6581
Zone	SAMPLE ID	WIDTH	Ag (gpt)
Bromide	BMCH03	1.2	8.5

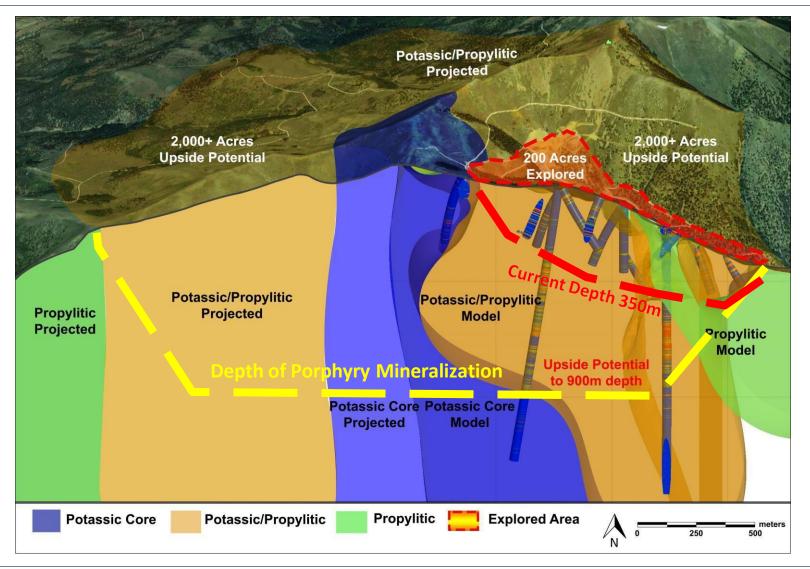
Surface Trenching Highlights

Zone	Sample No	Width (m)	Gold (g/t)
Oro	273	0.5	1.2
Oro	274	0.5	1.6
Oro	443	0.5	3.8
Oro	446	0.5	2.1
Oro	460	0.5	1.3
Oro	483	0.5	1.5
Oro	484	0.5	2.3
Oro	485	0.5	1.7
Oro	486	0.5	3.7
Oro	487	0.5	20.3
Oro	488	0.5	10.5
Oro	489	0.5	10.6
Oro	490	0.5	81.6
Bromide	37	1.5	45.6
Bromide	64	3	24.1
Bromide	98	1.9	17.7

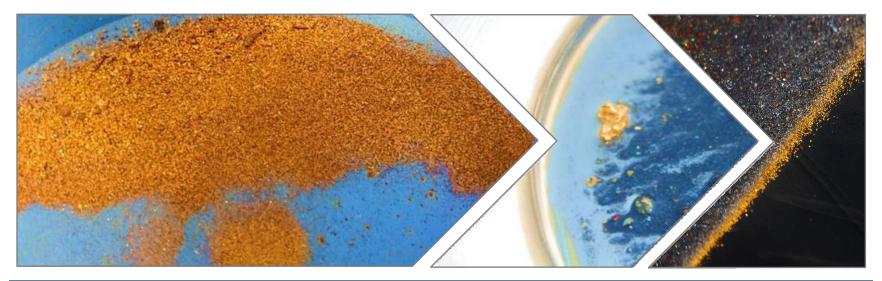

Upside Potential Overview

Overview of Evidence for Extensive Project Upside Potential

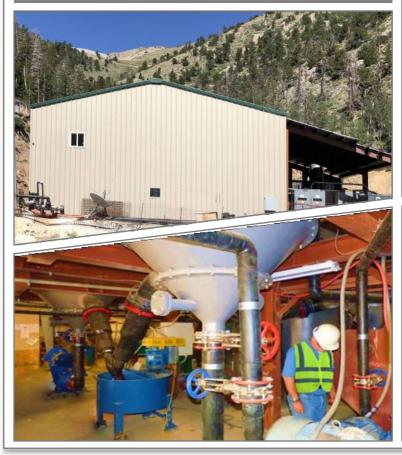
- Location of the center of the porphyry system is well understood based on the current exploration footprint, satellite, geophysics, and surface alteration mapping. ✓
- ✓ Extensive mineralized surface area remains unexplored >1,800 acres.
- Deep portion of the mineralization 350-1,000 meter depth is primarily unexplored across 2,000 acres and lends itself to bulk underground mining methods.
- Multiple unexplored drill targets identified (e.g. stockworks, gossans, and surface structures discovered and mapped in 2019-2021).
- Coarse gold and high-grade channels and trenching are not included in MRE but can be developed as a major contributor to future MRE with denser infill drilling.
- ✓ Multi-element mining potential currently not considered in MRE.
- Blue sky scoping study shows bulk underground potential with encouraging drill results in 1,000m deep drill holes and open pit potential with further definition/infill drilling.

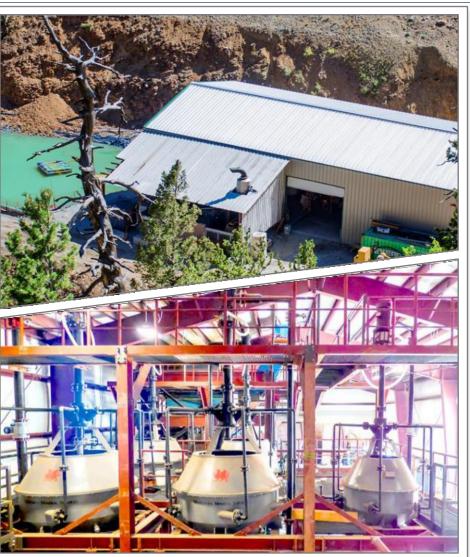


Upside Potential: Exploration Area >2,000 Acres


Upside Potential: Current MRE Only Extends to a Depth of 350m Mineralization Shown to Extend to ~900m

Coarse Gold and Breccia Pipes (Not included in MRE)

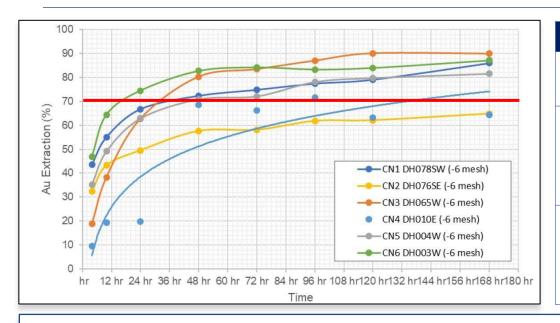

Histo	Historic Mining and Coarse Gold in Veins and Breccias					
✓	1.8 kms of underground mining has exposed high-grade breccias up to 25m wide \sim 15 gpt					
✓	25-100 tph gravity and floatation facility onsite					
✓	Mill production has exceeded head grade assays by up to 30% due to unmeasured coarse gold from veins and breccias					
√	Breccias and veins in the underground developments contain high-grade mineralization between 10 and 80 gpt					



Multi-element Optimized Commercial Grade Milling Facility

On Site Gravity and Flotation Facility

Multi-element Optimized Floatation Recovery Test Results


Optimized Floatation TestResults

	Au	Ag	Cu	Мо	Fe	S	Со
	ppm	ppm	%	ppm	%	%	ppm
Float Concentration	32	315	21.5	4120	28	31.2	530
Recovery %	92	66	88	71	69	32	75

Gold and Silver Heap Leach Processing Potential

MRE Processing

- ✓ The MRE uses only Au and Ag ina heap leach scenario
- Early heap leach testing using bottle rolls show encouraging results due to excellent mineralogy and lack of cyanide-robbing mineral types
- ✓ Additional base metal mineralization exists within across the project area and could be extracted using other processing methods

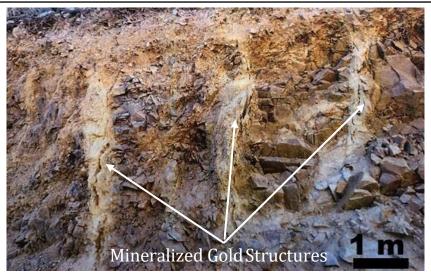
Heap Leach CN Bottle Roll Test Results (Sulfide Zone) - SGS Burnaby, BC Canada

		Feed	Consumption	on					Αι	l				
Test	Sample ID	K80	CN	Lime	Head (g/	t)				Extrac	ction (%	6)		
		(µm)	kg/t	kg/t	Direct	Calc.	4 hr	10 hr	24 hr	48 hr	72 hr	96 hr	120 hr	168 hr
CN1	DH078SW (-6 mesh)	1800	0.27	0.89	0.79	0.85	43.6	55.1	66.8	72.3	74.8	77.4	79.1	85.9
CN2	DH076SE (-6 mesh)	1635	0.38	0.89	1.01	1.45	32.5	43.2	49.5	57.6	58.1	61.8	62.1	64.8
CN3	DH065W (-6 mesh)	914	0.30	0.89	1.52	1.93	18.8	38.3	62.8	80.3	83.4	87.0	90.0	89.9
CN4	DH010E (-6 mesh)	1401	0.40	0.89	0.29	0.15	9.6	19.4	19.7	68.5	66.2	71.6	63.1	64.3
CN5	DH004W (-6 mesh)	1327	0.33	0.89	1.50	1.58	35.2	49.1	62.9	70.9	72.2	78.2	79.8	81.6
CN6	DH003W (-6 mesh)	855	0.30	0.89	1.28	1.28	46.9	64.4	74.5	82.7	84.2	83.3	83.9	87.1

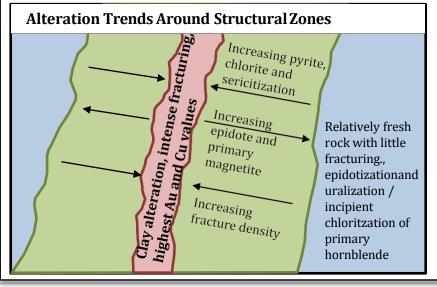
Geology Overview - Deposit Type General Descriptions

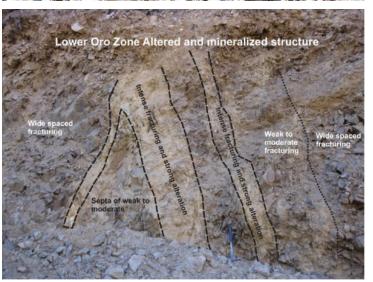
Gene	General Alteration and Veining					
✓	Large Maricunga-style gold porphyry					
✓	Mesothermal phyllic high-grade structures nearsurface					
✓	Potassic core (750m diameter) coinciding with a magnetic high					
✓	Large potassic/propylitic (3km diameter) mineralized halo surrounding the potassic core					
✓	Banded quartz veins and quartz stockwork in the core and on the surface					

Au po	Au porphyry system confirmed through drilling:					
✓	"Text book" gold porphyrymineralization					
✓	Independent Assessments by four senior geologists including Prolific consultant Jack McClintock ex BHP Global Exploration					
✓	"Discovery holes" DH078SW, DH076SE >1000 meters					
✓	Drilled through a 400 m intercept (300 -700 meters) of banded quartz veins / quartz stockwork					
✓	Veins encompassed by chloritic/sericitic and potassicalteration					
✓	Pronounced chalcopyrite, molybdenite, and gold mineralization associated with veins and stockwork					

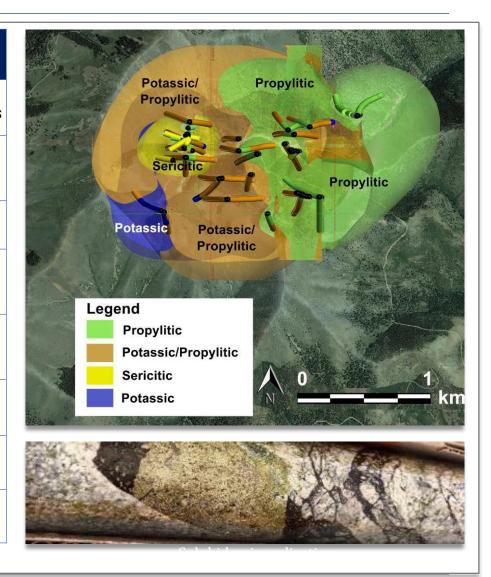

Notable Au-rich Porphyry Deposits Compared with the PMC Henry Mountains Au-Cu Porphyry

Deposit	Location	Intrusion Type	Age (MY)	Contained Au (Moz)	Total Tonnes (Mt)	Au (gpt)	Cu (%)
PMC Henry Mountain	Utah, USA	Diorite Porphyries	32-29	TBD	TBD	TBD	TBD
Au-Cu Porphyry (± Mo)							
La Colosa	Columbia	Diorite Porphyries	8	29	1,051	0.86	<0.1
Caspiche	Maricunga, Chile	Diorite Porphyries	25	19.3	1,282	0.52	0.2
Maricunga	Maricunga, Chile	Diorite Porphyries	23	9.8	460	0.66	0.03
Cerro Casale	Maricunga, Chile	Diorite Porphyries	13.5	23.2	1,285	0.6	0.22
Cerro Vetas	Columbia	Diorite Porphyries	8	10.6	632	0.52	<0.1
Kisladag	Turkey	Diorite Porphyries	14.5	16.8	500	0.62	0.021


Deposit	Mineralization	Alteration	Notable Features
PMC Henry Mountain	MT+PY+CP+MO+BN	potassic + sodic-calcic alteration	Banded Qtz-Mt veinlets, Qtz-sulfide veins
Au-Cu Porphyry (± Mo)			
La Colosa	PY+PO+MT+CP+MO	potassic + sodic-calcic alteration	Banded Qtz-Mt veinlets, Qtz-sulfide veins, Na-Mineralization
Caspiche	MT+PY+CP+MO+BN	potassic alteration	Banded Qtz-Mt veinlets, Qtz-sulfide veins, Breccias
Maricunga	MT+PY+CP+MO+BN	potassic + sodic-calcic alteration	Banded Qtz-Mt veinlets, Qtz-sulfide veins
Cerro Casale	Qtz-Py Qtz-Mt	Qtz-Chl-Py-Ser-Ep	Banded Qtz-Mt veinlets, Qtz-sulfide veins
Cerro Vetas	MT+PY+CP+MO+BN	potassic + sodic-calcic alteration	Banded Qtz-Mt veinlets, Qtz-sulfide veins
Kisladag	Py-Qtz	Kfs-Bt-Chl-Qtz veinlets-Py	Banded Qtz-Mt veinlets, Qtz-sulfide veins, PyriteOnly



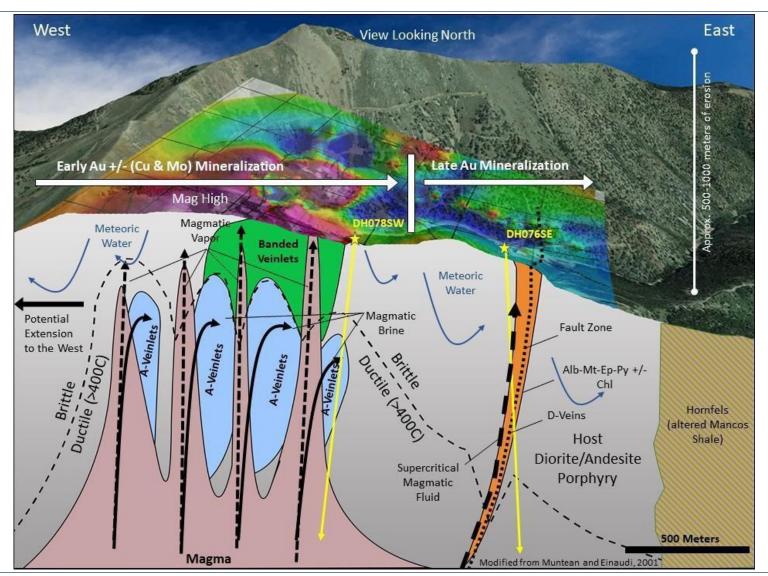
Geology Overview - Deposit Type: Surface Structural Deposit



Geology Overview - Porphyry Characteristics

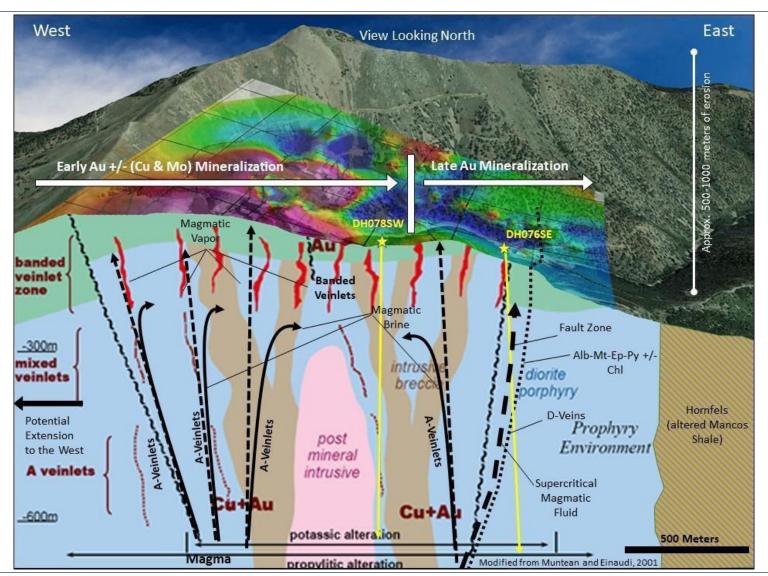
Porphyry Related Observations in Deep Diamond Core

- ✓ Complex history of multi-phase diorite, quartzdiorite, granodiorite, and quartz monzanite intrusions
- ✓ Developed quartz stockwork and bandedvein systems (General M, A, B, Vein Sequence)
- ✓ Sodic-Calcic alteration associated with mineralization
- ✓ Potassic/propylitic alteration associated with gold mineralization (common in gold porphyry systems)
- ✓ Well-developed propylitic halo (epidote,chlorite, sulphides)
- ✓ Sericite alteration along veins and within feldspars along surface vein structures
- ✓ Hydrothermal breccias (tourmaline breccias)
- Pyrite>>Chalcopyrite>Bornite>Molybdenite


General Characteristics Unique to Au-rich Porphyry Deposits

Criterion	Unique To Gold Porphyries	PMC Henry Mountain Au-Porphyry Characteristics
Scale	 Large Scale, Low-grade Au ± Cu ± Mo 	~3km Diameter Au ± Cu ± Mo Footprint to 900 mdepth
Intrusion Type	Shallow complex multi-stage stock	Yes, multiple Complex Intrusions
	 Diorite (intermediate) compositions 	Yes, diorite and Quartz Diorite (somegranodiorite)
	Porphyritic Textures	Yes, primarily
	 Oxidized (magnetite-bearing) 	Yes, >5 Volume%
	 Hydrous (primary amphibole/biotite) 	Yes, abundant
	 Sulfur-rich (sulfides and sulfates) 	Yes, pyrite, chalcopyrite, bornite, purple anhydrite
Fluids	High salinity	Yes, strong albite alteration
	 Oxidized (magnetite-bearing) 	Yes, magnetite-hematite system
	• Low CO2	Yes, very little carbonate across theproject
Shape	Typically Cylindrical (variable - matches	Likely more elongate or tabular in a NW-SE (330Degree)
	parental intrusion shape)	trend
Alteration/Grade	Potassic alteration (± phyllic	Yes, observed as shreddy-biotite and/or prevalence of subtle
Associations	remobiliation/leaching)	potassium-altered feldspars (also geochemically anomalous)
	 Na-alteration (e.g. La Colosa) 	Yes, Abundant and associated with high Au and Cugrades
	 Chlorite-Sericite (e.g. Cerro Colorado) 	Yes, sericite is generally weak or absent, but chlorite-albite-
		magnetite assemblages are associated with highergrades
	• Propylitic	Yes, albite-epidote-magnetite-sulfide can host high grades
	Tropymae	(1-5 grams)
Vein Types	Banded Veins (magnetite-quartz, dark	Yes, Abundant in outcrop/core, typically associated with
	inclusion-rich quartz-quartz)	higher grades
	 Dense Veining M, A, B Sequence 	Yes, Complex cross-cutting relationships follow a typicalM,
		A, B, sequence
	 Hydraulic Fracturing 	Yes, Abundant quartz stockworks with a general 330-degree
		NW-SE trend with weaker 270-degree cross-cutting vein set
Sulfide Types	 Pyrite>>Chalcopyrite±Molybdenite±Bornite ±Chalcocite 	Pyrite>>Chalcopyrite>Molybdenite>Bornite± Chalcocite

^{*}Bold Red Type = Unique importance to Au-rich porphyry deposits

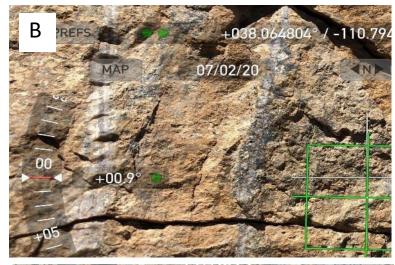


General Geologic Models of the Henry Mountain Au-Porphyry

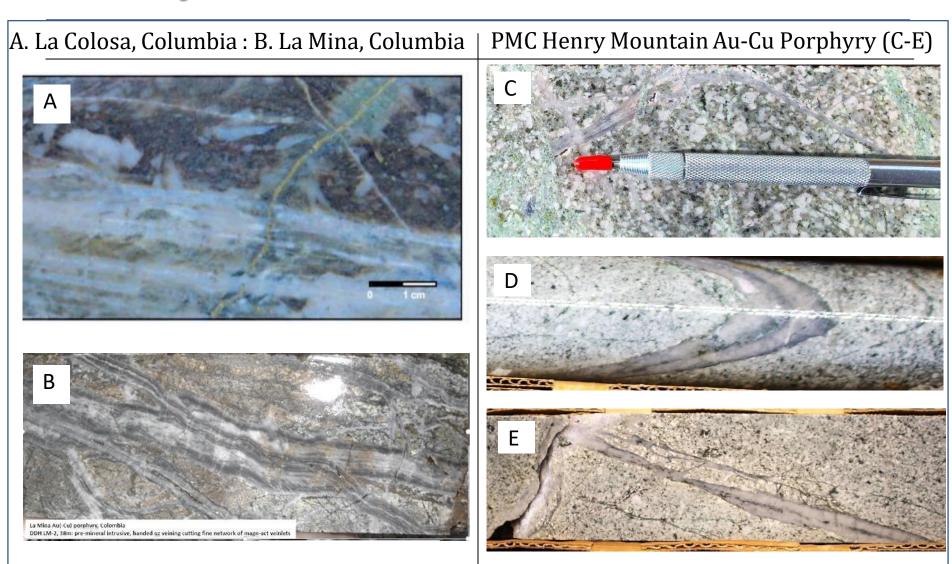
General Geologic Models of the Henry Mountain Au-Porphyry

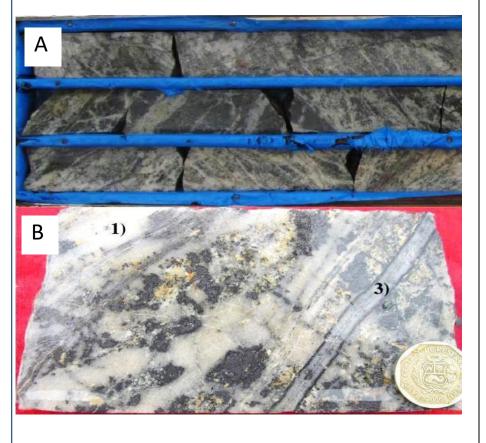
Banded Quartz Veins: A Au-Porphyry Specialty!

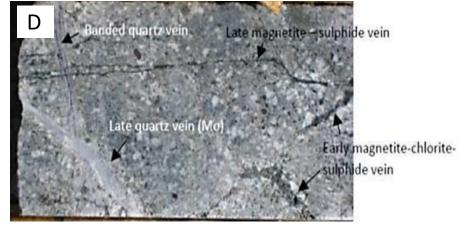
Cerro Casale – Maricunga, Chile (A-B) PMC Henry Mountain Au-Cu Porphyry (C-E)


Outcrop Samples of Banded Quartz Veins

Bajo de la Alumbrera, Argentina (A)


PMC Henry Mountain Au-Cu Porphyry (B-C)


Banded Quartz Veins in Core

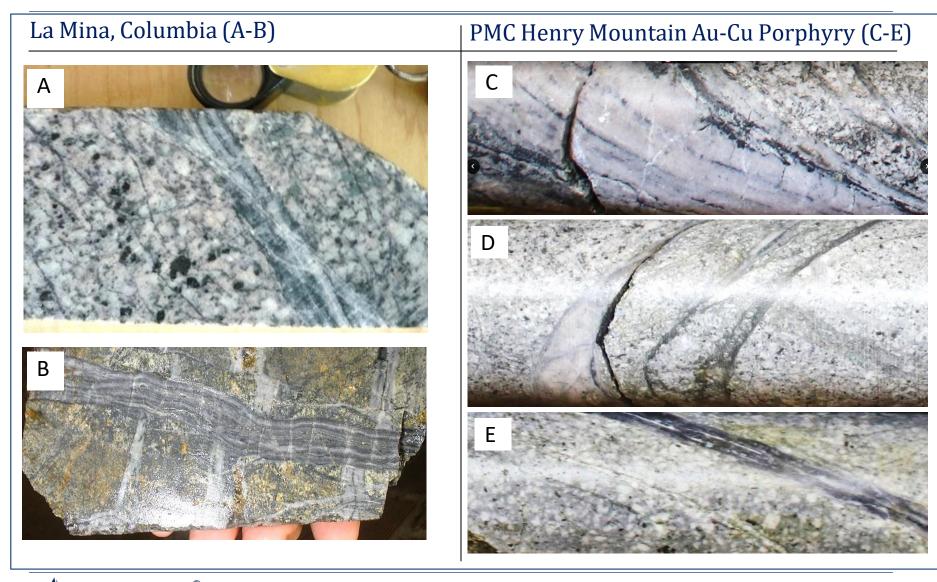


Banded Quartz Veins in Core

Amaro, Peru (A-B) PMC Henry Mountain Au-Cu Porphyry (C-D)

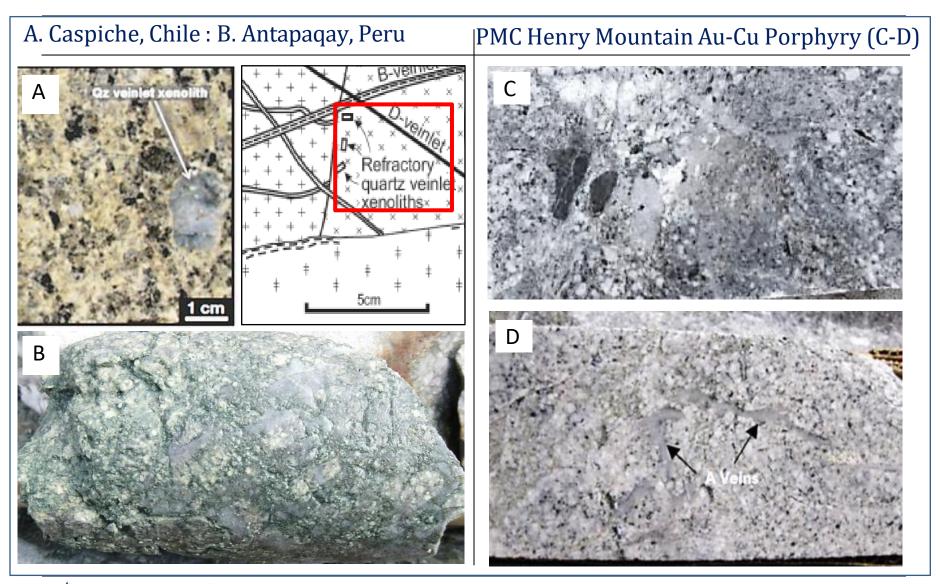
Magnetite M-Type Veins

A. Caspiche, Chile: B. La Colosa, Columbia | PMC Henry Mountain Au-Cu Porphyry (C-E)



B-Veins and A-Veins

La Colosa, Columbia (A-B) PMC Henry Mountain Au-Cu Porphyry (C-D) В

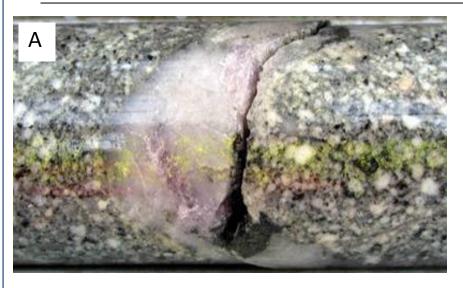


Banded Quartz Veins

Refractory Rounded A-vein Clasts

Fracture Controlled Sodic (Albite) Halos

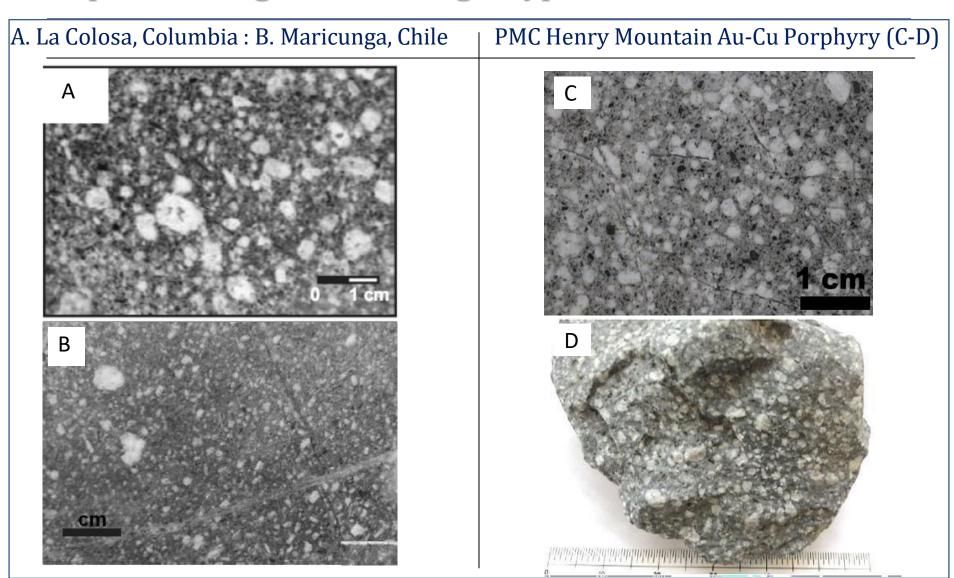
La Colosa Au-Cu Porphyry, Columbia (A-B) PMC Henry Mountain Au-Cu Porphyry (C-D)


Fracture Controlled Sodic (Albite) Alteration

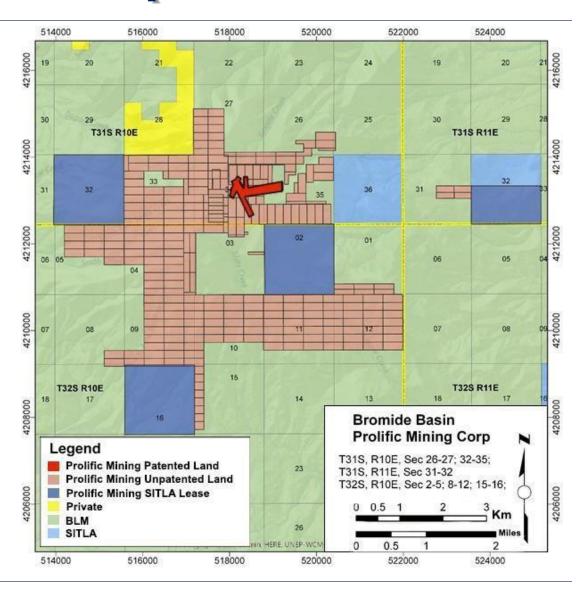
La Colosa Au-Cu Porphyry, Columbia |PMC Henry Mountain Au-Cu Porphyry (B-C)

Leached (Vugs) and Purple Anhydrite

A. Ferrobombas, Peru: B. Grasberg Indonesia PMC Henry Mountain Au-Cu Porphyry (C-D)



Deposit Analogues - Lithologic Types



Mineral Tenure and Ownership

Claim Type	Number	Hectares
BLM	303	2584
SITLA	4	906
Patented	1	33
Totals	308	3524

Ownership	Percentage
Majority Share Holders	95%
Minority Share Holders	5%
Royalty (NSR) *	5%

• NSR is only applied to the original 500 acre plot within the Bromide Basin and is not applicable to the 8,000 acres

Corporate Offices

Miami, Florida Corporate Office

80 SW 8 Street Suite 2000 Miami Florida 33130 **305 607 6244** e.gold@prolificmines.com

Contact

For additional information including:

- NI 43-101 Mineral Resource Estimate
- Data Room including files on detailed exploration, metallurgical, geophysical, Leapfrog models, and satellite imaging data

